mix_train_300.py 6.6 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206
  1. import keras
  2. # -*- encoding:utf-8 -*-
  3. import numpy as np
  4. from keras.models import Sequential
  5. # 优化方法选用Adam(其实可选项有很多,如SGD)
  6. from keras.optimizers import Adam
  7. import random
  8. from keras.models import load_model
  9. from imblearn.over_sampling import RandomOverSampler
  10. from keras.utils import np_utils
  11. # 用于模型初始化,Conv2D模型初始化、Activation激活函数,MaxPooling2D是池化层
  12. # Flatten作用是将多位输入进行一维化
  13. # Dense是全连接层
  14. from keras.layers import Conv2D, Activation, MaxPool2D, Flatten, Dense,Dropout,Input,MaxPooling2D,BatchNormalization,concatenate
  15. from keras import regularizers
  16. from keras.models import Model
  17. from keras.callbacks import EarlyStopping
  18. early_stopping = EarlyStopping(monitor='accuracy', patience=5, verbose=2)
  19. epochs= 88
  20. size = 400000 #18W 60W
  21. file_path = 'D:\\data\\quantization\\stock314_24d_train2.log'
  22. model_path = '314_24d_mix_6D_ma5_s_seq.h5'
  23. file_path1='D:\\data\\quantization\\stock314_24d_test.log'
  24. col = 18
  25. row = 24
  26. '''
  27. 30d+ma5
  28. 0 ROC 30*18 38,100,17
  29. 1 DMI 30*20 39,101,13
  30. 2 MACD 30*19
  31. 3 RSI 30*17
  32. 30d+close
  33. 4 ROC 30*18
  34. 5 DMI 30*20
  35. 6 MACD 30*19 32,96,44
  36. 7 RSI 30*17 31,96,42
  37. 24d+close
  38. 14 ROC 24*18 31,95,52
  39. '''
  40. def read_data(path, path1=file_path1):
  41. lines = []
  42. with open(path) as f:
  43. for x in range(size): #610000
  44. line = eval(f.readline().strip())
  45. lines.append(line)
  46. with open(path1) as f:
  47. for x in range(20000):
  48. line = eval(f.readline().strip())
  49. lines.append(line)
  50. random.shuffle(lines)
  51. print('读取数据完毕')
  52. d=int(0.85*len(lines))
  53. length = len(lines[0])
  54. train_x=[s[:length - 2] for s in lines[0:d]]
  55. train_y=[s[-1] for s in lines[0:d]]
  56. test_x=[s[:length - 2] for s in lines[d:]]
  57. test_y=[s[-1] for s in lines[d:]]
  58. print('转换数据完毕')
  59. ros = RandomOverSampler(random_state=0)
  60. X_resampled, y_resampled = ros.fit_sample(np.array(train_x), np.array(train_y))
  61. print('数据重采样完毕')
  62. return X_resampled,y_resampled,np.array(test_x),np.array(test_y)
  63. train_x,train_y,test_x,test_y=read_data(file_path)
  64. train_x_a = train_x[:,:row*col]
  65. train_x_a = train_x_a.reshape(train_x.shape[0], row, col, 1)
  66. # train_x_b = train_x[:, 9*26:18*26]
  67. # train_x_b = train_x_b.reshape(train_x.shape[0], 9, 26, 1)
  68. train_x_c = train_x[:,row*col:]
  69. def create_mlp(dim, regress=False):
  70. # define our MLP network
  71. model = Sequential()
  72. model.add(Dense(256, input_dim=dim, activation="relu"))
  73. model.add(Dropout(0.2))
  74. model.add(Dense(256, activation="relu"))
  75. model.add(Dense(256, activation="relu"))
  76. model.add(Dense(128, activation="relu"))
  77. # check to see if the regression node should be added
  78. if regress:
  79. model.add(Dense(1, activation="linear"))
  80. # return our model
  81. return model
  82. def create_cnn(width, height, depth, size=48, kernel_size=(5, 6), regress=False, output=24):
  83. # initialize the input shape and channel dimension, assuming
  84. # TensorFlow/channels-last ordering
  85. inputShape = (width, height, 1)
  86. chanDim = -1
  87. # define the model input
  88. inputs = Input(shape=inputShape)
  89. # x = inputs
  90. # CONV => RELU => BN => POOL
  91. x = Conv2D(size, kernel_size, strides=2, padding="same")(inputs)
  92. x = Activation("relu")(x)
  93. x = BatchNormalization(axis=chanDim)(x)
  94. # y = Conv2D(24, (2, 8), strides=2, padding="same")(inputs)
  95. # y = Activation("relu")(y)
  96. # y = BatchNormalization(axis=chanDim)(y)
  97. # flatten the volume, then FC => RELU => BN => DROPOUT
  98. x = Flatten()(x)
  99. x = Dense(output)(x)
  100. x = Activation("relu")(x)
  101. x = BatchNormalization(axis=chanDim)(x)
  102. x = Dropout(0.2)(x)
  103. # apply another FC layer, this one to match the number of nodes
  104. # coming out of the MLP
  105. x = Dense(output)(x)
  106. x = Activation("relu")(x)
  107. # check to see if the regression node should be added
  108. if regress:
  109. x = Dense(1, activation="linear")(x)
  110. # construct the CNN
  111. model = Model(inputs, x)
  112. # return the CNN
  113. return model
  114. # create the MLP and CNN models
  115. mlp = create_mlp(train_x_c.shape[1], regress=False)
  116. # cnn_0 = create_cnn(18, 20, 1, kernel_size=(3, 3), size=90, regress=False, output=96) # 31 97 46
  117. cnn_0 = create_cnn(row, col, 1, kernel_size=(6, col), size=96, regress=False, output=96) # 29 98 47
  118. # cnn_0 = create_cnn(18, 20, 1, kernel_size=(9, 9), size=90, regress=False, output=96) # 28 97 53
  119. # cnn_0 = create_cnn(18, 20, 1, kernel_size=(3, 20), size=90, regress=False, output=96)
  120. # cnn_1 = create_cnn(18, 20, 1, kernel_size=(18, 10), size=80, regress=False, output=96)
  121. # cnn_1 = create_cnn(9, 26, 1, kernel_size=(2, 14), size=36, regress=False, output=64)
  122. # create the input to our final set of layers as the *output* of both
  123. # the MLP and CNN
  124. combinedInput = concatenate([mlp.output, cnn_0.output, ])
  125. # our final FC layer head will have two dense layers, the final one
  126. # being our regression head
  127. x = Dense(1024, activation="relu", kernel_regularizer=regularizers.l1(0.003))(combinedInput)
  128. x = Dropout(0.2)(x)
  129. x = Dense(1024, activation="relu")(x)
  130. x = Dense(1024, activation="relu")(x)
  131. # 在建设一层
  132. x = Dense(4, activation="softmax")(x)
  133. # our final model will accept categorical/numerical data on the MLP
  134. # input and images on the CNN input, outputting a single value (the
  135. # predicted price of the house)
  136. model = Model(inputs=[mlp.input, cnn_0.input, ], outputs=x)
  137. print("Starting training ")
  138. # h = model.fit(train_x, train_y, batch_size=4096*2, epochs=500, shuffle=True)
  139. # compile the model using mean absolute percentage error as our loss,
  140. # implying that we seek to minimize the absolute percentage difference
  141. # between our price *predictions* and the *actual prices*
  142. opt = Adam(lr=1e-3, decay=1e-3 / 200)
  143. model.compile(loss="categorical_crossentropy", optimizer=opt, metrics=['accuracy'])
  144. # train the model
  145. print("[INFO] training model...")
  146. model.fit(
  147. [train_x_c, train_x_a, ], train_y,
  148. # validation_data=([testAttrX, testImagesX], testY),
  149. # epochs=int(3*train_x_a.shape[0]/1300),
  150. epochs=epochs,
  151. batch_size=2048, shuffle=True,
  152. callbacks=[early_stopping]
  153. )
  154. model.save(model_path)
  155. test_x_a = test_x[:,:row*col]
  156. test_x_a = test_x_a.reshape(test_x.shape[0], row, col, 1)
  157. # test_x_b = test_x[:, 9*26:9*26+9*26]
  158. # test_x_b = test_x_b.reshape(test_x.shape[0], 9, 26, 1)
  159. test_x_c = test_x[:,row*col:]
  160. # make predictions on the testing data
  161. print("[INFO] predicting house prices...")
  162. score = model.evaluate([test_x_c, test_x_a,], test_y)
  163. print(score)
  164. print('Test score:', score[0])
  165. print('Test accuracy:', score[1])