mix_train_500.py 6.5 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196
  1. import keras
  2. # -*- encoding:utf-8 -*-
  3. import numpy as np
  4. from keras.models import Sequential
  5. # 优化方法选用Adam(其实可选项有很多,如SGD)
  6. from keras.optimizers import Adam
  7. import random
  8. from keras.models import load_model
  9. from imblearn.over_sampling import RandomOverSampler
  10. from keras.utils import np_utils
  11. # 用于模型初始化,Conv2D模型初始化、Activation激活函数,MaxPooling2D是池化层
  12. # Flatten作用是将多位输入进行一维化
  13. # Dense是全连接层
  14. from keras.layers import Conv2D, Activation, MaxPool2D, Flatten, Dense,Dropout,Input,MaxPooling2D,BatchNormalization,concatenate
  15. from keras import regularizers
  16. from keras.models import Model
  17. from keras.callbacks import EarlyStopping
  18. early_stopping = EarlyStopping(monitor='accuracy', patience=5, verbose=2)
  19. epochs= 42
  20. size = 420000 #共68W
  21. file_path = 'D:\\data\\quantization\\stock501_28d_train2.log'
  22. model_path = '501_28d_mix_5D_ma5_s_seq.h5'
  23. file_path1='D:\\data\\quantization\\stock501_28d_test.log'
  24. row = 28
  25. col = 19
  26. '''
  27. 0 dmi 28*20 38,98,51/5 下跌预判非常准
  28. 1 macd 28*19 41,98,53/8
  29. '''
  30. def read_data(path, path1=file_path1):
  31. lines = []
  32. with open(path) as f:
  33. for x in range(size): #680000
  34. line = eval(f.readline().strip())
  35. lines.append(line)
  36. with open(path1) as f:
  37. for x in range(32000): #6w
  38. line = eval(f.readline().strip())
  39. lines.append(line)
  40. random.shuffle(lines)
  41. print('读取数据完毕')
  42. d=int(0.85*len(lines))
  43. length = len(lines[0])
  44. train_x=[s[:length - 2] for s in lines[0:d]]
  45. train_y=[s[-1] for s in lines[0:d]]
  46. test_x=[s[:length - 2] for s in lines[d:]]
  47. test_y=[s[-1] for s in lines[d:]]
  48. print('转换数据完毕')
  49. ros = RandomOverSampler(random_state=0)
  50. X_resampled, y_resampled = ros.fit_sample(np.array(train_x, dtype=np.float32), np.array(train_y, dtype=np.float32))
  51. print('数据重采样完毕')
  52. return X_resampled,y_resampled,np.array(test_x, dtype=np.float32),np.array(test_y, dtype=np.float32)
  53. train_x,train_y,test_x,test_y=read_data(file_path)
  54. train_x_a = train_x[:,:row*col]
  55. train_x_a = train_x_a.reshape(train_x.shape[0], row, col, 1)
  56. # train_x_b = train_x[:, 9*26:18*26]
  57. # train_x_b = train_x_b.reshape(train_x.shape[0], 9, 26, 1)
  58. train_x_c = train_x[:,row*col:]
  59. def create_mlp(dim, regress=False):
  60. # define our MLP network
  61. model = Sequential()
  62. model.add(Dense(256, input_dim=dim, activation="relu"))
  63. model.add(Dropout(0.2))
  64. model.add(Dense(256, activation="relu"))
  65. model.add(Dense(256, activation="relu"))
  66. model.add(Dense(128, activation="relu"))
  67. # check to see if the regression node should be added
  68. if regress:
  69. model.add(Dense(1, activation="linear"))
  70. # return our model
  71. return model
  72. def create_cnn(width, height, depth, size=48, kernel_size=(5, 6), regress=False, output=24):
  73. # initialize the input shape and channel dimension, assuming
  74. # TensorFlow/channels-last ordering
  75. inputShape = (width, height, 1)
  76. chanDim = -1
  77. # define the model input
  78. inputs = Input(shape=inputShape)
  79. # x = inputs
  80. # CONV => RELU => BN => POOL
  81. x = Conv2D(size, kernel_size, strides=2, padding="same")(inputs)
  82. x = Activation("relu")(x)
  83. x = BatchNormalization(axis=chanDim)(x)
  84. # y = Conv2D(24, (2, 8), strides=2, padding="same")(inputs)
  85. # y = Activation("relu")(y)
  86. # y = BatchNormalization(axis=chanDim)(y)
  87. # flatten the volume, then FC => RELU => BN => DROPOUT
  88. x = Flatten()(x)
  89. x = Dense(output)(x)
  90. x = Activation("relu")(x)
  91. x = BatchNormalization(axis=chanDim)(x)
  92. x = Dropout(0.2)(x)
  93. # apply another FC layer, this one to match the number of nodes
  94. # coming out of the MLP
  95. x = Dense(output)(x)
  96. x = Activation("relu")(x)
  97. # check to see if the regression node should be added
  98. if regress:
  99. x = Dense(1, activation="linear")(x)
  100. # construct the CNN
  101. model = Model(inputs, x)
  102. # return the CNN
  103. return model
  104. # create the MLP and CNN models
  105. mlp = create_mlp(train_x_c.shape[1], regress=False)
  106. # cnn_0 = create_cnn(18, 20, 1, kernel_size=(3, 3), size=90, regress=False, output=96) # 31 97 46
  107. cnn_0 = create_cnn(row, col, 1, kernel_size=(6, col), size=96, regress=False, output=96) # 29 98 47
  108. # cnn_0 = create_cnn(18, 20, 1, kernel_size=(9, 9), size=90, regress=False, output=96) # 28 97 53
  109. # cnn_0 = create_cnn(18, 20, 1, kernel_size=(3, 20), size=90, regress=False, output=96)
  110. # cnn_1 = create_cnn(18, 20, 1, kernel_size=(18, 10), size=80, regress=False, output=96)
  111. # cnn_1 = create_cnn(9, 26, 1, kernel_size=(2, 14), size=36, regress=False, output=64)
  112. # create the input to our final set of layers as the *output* of both
  113. # the MLP and CNN
  114. combinedInput = concatenate([mlp.output, cnn_0.output, ])
  115. # our final FC layer head will have two dense layers, the final one
  116. # being our regression head
  117. x = Dense(1024, activation="relu", kernel_regularizer=regularizers.l1(0.003))(combinedInput)
  118. x = Dropout(0.2)(x)
  119. x = Dense(1024, activation="relu")(x)
  120. x = Dense(1024, activation="relu")(x)
  121. # 在建设一层
  122. x = Dense(4, activation="softmax")(x)
  123. # our final model will accept categorical/numerical data on the MLP
  124. # input and images on the CNN input, outputting a single value (the
  125. # predicted price of the house)
  126. model = Model(inputs=[mlp.input, cnn_0.input, ], outputs=x)
  127. print("Starting training ")
  128. # h = model.fit(train_x, train_y, batch_size=4096*2, epochs=500, shuffle=True)
  129. # compile the model using mean absolute percentage error as our loss,
  130. # implying that we seek to minimize the absolute percentage difference
  131. # between our price *predictions* and the *actual prices*
  132. opt = Adam(lr=1e-3, decay=1e-3 / 200)
  133. model.compile(loss="categorical_crossentropy", optimizer=opt, metrics=['accuracy'])
  134. # train the model
  135. print("[INFO] training model...")
  136. model.fit(
  137. [train_x_c, train_x_a, ], train_y,
  138. # validation_data=([testAttrX, testImagesX], testY),
  139. # epochs=int(3*train_x_a.shape[0]/1300),
  140. epochs=epochs,
  141. batch_size=2048, shuffle=True,
  142. callbacks=[early_stopping]
  143. )
  144. model.save(model_path)
  145. test_x_a = test_x[:,:row*col]
  146. test_x_a = test_x_a.reshape(test_x.shape[0], row, col, 1)
  147. # test_x_b = test_x[:, 9*26:9*26+9*26]
  148. # test_x_b = test_x_b.reshape(test_x.shape[0], 9, 26, 1)
  149. test_x_c = test_x[:,row*col:]
  150. # make predictions on the testing data
  151. print("[INFO] predicting house prices...")
  152. score = model.evaluate([test_x_c, test_x_a,], test_y)
  153. print(score)
  154. print('Test score:', score[0])
  155. print('Test accuracy:', score[1])