mix_train_190.py 6.7 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201
  1. import keras
  2. # -*- encoding:utf-8 -*-
  3. import numpy as np
  4. from keras.models import Sequential
  5. # 优化方法选用Adam(其实可选项有很多,如SGD)
  6. from keras.optimizers import Adam
  7. import random
  8. from keras.models import load_model
  9. from imblearn.over_sampling import RandomOverSampler
  10. from keras.utils import np_utils
  11. # 用于模型初始化,Conv2D模型初始化、Activation激活函数,MaxPooling2D是池化层
  12. # Flatten作用是将多位输入进行一维化
  13. # Dense是全连接层
  14. from keras.layers import Conv2D, Activation, MaxPool2D, Flatten, Dense,Dropout,Input,MaxPooling2D,BatchNormalization,concatenate
  15. from keras import regularizers
  16. from keras.models import Model
  17. from keras.callbacks import EarlyStopping
  18. early_stopping = EarlyStopping(monitor='accuracy', patience=5, verbose=2)
  19. epochs= 88
  20. size = 400000 #18W 60W
  21. file_path = 'D:\\data\\quantization\\stock196_18d_train2.log'
  22. model_path = '196A_18d_mix_6D_ma5_s_seq.h5'
  23. file_path1='D:\\data\\quantization\\stock196_18d_test.log'
  24. '''
  25. 大盘预测
  26. 结果均用使用ma
  27. 6 ROC cnn18*18 37,99,28
  28. 7 ROC + 窗口6*18+ cnn18*18
  29. 8 after用5日
  30. 9 after5 + roc in before
  31. 9A after5 + roc in before + beta
  32. 9B after5 + roc in before + beta + 其他信息
  33. '''
  34. def read_data(path, path1=file_path1):
  35. lines = []
  36. with open(path) as f:
  37. for x in range(size): #610000
  38. line = eval(f.readline().strip())
  39. lines.append(line)
  40. with open(path1) as f:
  41. for x in range(50000):
  42. line = eval(f.readline().strip())
  43. lines.append(line)
  44. random.shuffle(lines)
  45. print('读取数据完毕')
  46. d=int(0.85*len(lines))
  47. length = len(lines[0])
  48. train_x=[s[:length - 2] for s in lines[0:d]]
  49. train_y=[s[-1] for s in lines[0:d]]
  50. test_x=[s[:length - 2] for s in lines[d:]]
  51. test_y=[s[-1] for s in lines[d:]]
  52. print('转换数据完毕')
  53. ros = RandomOverSampler(random_state=0)
  54. X_resampled, y_resampled = ros.fit_sample(np.array(train_x), np.array(train_y))
  55. print('数据重采样完毕')
  56. return X_resampled,y_resampled,np.array(test_x),np.array(test_y)
  57. train_x,train_y,test_x,test_y=read_data(file_path)
  58. train_x_a = train_x[:,:18*18]
  59. train_x_a = train_x_a.reshape(train_x.shape[0], 18, 18, 1)
  60. # train_x_b = train_x[:, 9*26:18*26]
  61. # train_x_b = train_x_b.reshape(train_x.shape[0], 9, 26, 1)
  62. train_x_c = train_x[:,18*18:]
  63. def create_mlp(dim, regress=False):
  64. # define our MLP network
  65. model = Sequential()
  66. model.add(Dense(256, input_dim=dim, activation="relu"))
  67. model.add(Dropout(0.2))
  68. model.add(Dense(256, activation="relu"))
  69. model.add(Dense(256, activation="relu"))
  70. model.add(Dense(128, activation="relu"))
  71. # check to see if the regression node should be added
  72. if regress:
  73. model.add(Dense(1, activation="linear"))
  74. # return our model
  75. return model
  76. def create_cnn(width, height, depth, size=48, kernel_size=(5, 6), regress=False, output=24):
  77. # initialize the input shape and channel dimension, assuming
  78. # TensorFlow/channels-last ordering
  79. inputShape = (width, height, 1)
  80. chanDim = -1
  81. # define the model input
  82. inputs = Input(shape=inputShape)
  83. # x = inputs
  84. # CONV => RELU => BN => POOL
  85. x = Conv2D(size, kernel_size, strides=2, padding="same")(inputs)
  86. x = Activation("relu")(x)
  87. x = BatchNormalization(axis=chanDim)(x)
  88. # y = Conv2D(24, (2, 8), strides=2, padding="same")(inputs)
  89. # y = Activation("relu")(y)
  90. # y = BatchNormalization(axis=chanDim)(y)
  91. # flatten the volume, then FC => RELU => BN => DROPOUT
  92. x = Flatten()(x)
  93. x = Dense(output)(x)
  94. x = Activation("relu")(x)
  95. x = BatchNormalization(axis=chanDim)(x)
  96. x = Dropout(0.2)(x)
  97. # apply another FC layer, this one to match the number of nodes
  98. # coming out of the MLP
  99. x = Dense(output)(x)
  100. x = Activation("relu")(x)
  101. # check to see if the regression node should be added
  102. if regress:
  103. x = Dense(1, activation="linear")(x)
  104. # construct the CNN
  105. model = Model(inputs, x)
  106. # return the CNN
  107. return model
  108. # create the MLP and CNN models
  109. mlp = create_mlp(train_x_c.shape[1], regress=False)
  110. # cnn_0 = create_cnn(18, 21, 1, kernel_size=(3, 3), size=64, regress=False, output=128) # 31 97 46
  111. # cnn_0 = create_cnn(18, 21, 1, kernel_size=(6, 6), size=64, regress=False, output=128) # 29 98 47
  112. # cnn_0 = create_cnn(18, 21, 1, kernel_size=(9, 9), size=64, regress=False, output=128) # 28 97 53
  113. cnn_0 = create_cnn(18, 18, 1, kernel_size=(6, 18), size=96, regress=False, output=128) #A23 99 33 A' 26 99 36 #B 34 98 43
  114. # cnn_1 = create_cnn(18, 21, 1, kernel_size=(18, 11), size=96, regress=False, output=96)
  115. # cnn_1 = create_cnn(9, 26, 1, kernel_size=(2, 14), size=36, regress=False, output=64)
  116. # create the input to our final set of layers as the *output* of both
  117. # the MLP and CNN
  118. combinedInput = concatenate([mlp.output, cnn_0.output])
  119. # our final FC layer head will have two dense layers, the final one
  120. # being our regression head
  121. x = Dense(1024, activation="relu", kernel_regularizer=regularizers.l1(0.003))(combinedInput)
  122. x = Dropout(0.2)(x)
  123. x = Dense(1024, activation="relu")(x)
  124. x = Dense(1024, activation="relu")(x)
  125. # 在建设一层
  126. x = Dense(4, activation="softmax")(x)
  127. # our final model will accept categorical/numerical data on the MLP
  128. # input and images on the CNN input, outputting a single value (the
  129. # predicted price of the house)
  130. model = Model(inputs=[mlp.input, cnn_0.input,], outputs=x)
  131. print("Starting training ")
  132. # h = model.fit(train_x, train_y, batch_size=4096*2, epochs=500, shuffle=True)
  133. # compile the model using mean absolute percentage error as our loss,
  134. # implying that we seek to minimize the absolute percentage difference
  135. # between our price *predictions* and the *actual prices*
  136. opt = Adam(lr=1e-3, decay=1e-3 / 200)
  137. model.compile(loss="categorical_crossentropy", optimizer=opt, metrics=['accuracy'])
  138. # train the model
  139. print("[INFO] training model...")
  140. model.fit(
  141. [train_x_c, train_x_a,], train_y,
  142. # validation_data=([testAttrX, testImagesX], testY),
  143. # epochs=int(3*train_x_a.shape[0]/1300),
  144. epochs=epochs,
  145. batch_size=2048, shuffle=True,
  146. callbacks=[early_stopping]
  147. )
  148. model.save(model_path)
  149. test_x_a = test_x[:,:18*18]
  150. test_x_a = test_x_a.reshape(test_x.shape[0], 18, 18, 1)
  151. # test_x_b = test_x[:, 9*26:9*26+9*26]
  152. # test_x_b = test_x_b.reshape(test_x.shape[0], 9, 26, 1)
  153. test_x_c = test_x[:,18*18:]
  154. # make predictions on the testing data
  155. print("[INFO] predicting house prices...")
  156. score = model.evaluate([test_x_c, test_x_a], test_y)
  157. print(score)
  158. print('Test score:', score[0])
  159. print('Test accuracy:', score[1])