1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495 |
- #!/usr/bin/python
- # -*- coding: UTF-8 -*-
- '''
- 最简单的mse
- '''
- import sys
- import os
- sys.path.append(os.path.abspath('..'))
- from util.config import config
- import numpy as np
- from sklearn.linear_model import LinearRegression
- from sklearn import metrics
- from draw import draw_util
- def curce_data(x,y,y_pred):
- x=x.tolist()
- y=y.tolist()
- y_pred=y_pred.tolist()
- results=zip(x,y,y_pred)
- results=["{},{},{}".format(s[0],s[1][0],s[2][0]) for s in results ]
- return results
- def read_data(path):
- with open(path) as f :
- lines=f.readlines()
- lines=[eval(line.strip()) for line in lines]
- X,y=zip(*lines)
- X=np.array(X)
- y=np.array(y)
- return X,y
- def demo():
- X_train,y_train=read_data(config.get('application', 'train_data_path'))
- X_test,y_test=read_data(config.get('application', 'test_data_path'))
- #一个对象,它代表的线性回归模型,它的成员变量,就已经有了w,b. 刚生成w和b的时候 是随机的
- model = LinearRegression()
- #一调用这个函数,就会不停地找合适的w和b 直到误差最小
- model.fit(X_train, y_train)
- #打印W
- print(model.coef_)
- #打印b
- print(model.intercept_)
- #模型已经训练完毕,用模型看下在训练集的表现
- y_pred_train = model.predict(X_train)
- #sklearn 求解训练集的mse
- # y_train 在训练集上 真实的y值
- # y_pred_train 通过模型预测出来的y值
- #计算 (y_train-y_pred_train)^2/n
- train_mse = metrics.mean_squared_error(y_train, y_pred_train)
- print("训练集MSE:", train_mse)
- #看下在测试集上的效果
- y_pred_test = model.predict(X_test)
- print(y_pred_test)
- test_mse = metrics.mean_squared_error(y_test, y_pred_test)
- print("测试集MSE:",test_mse)
- # train_curve = curce_data(X_train,y_train,y_pred_train)
- test_curve = curce_data(X_test,y_test,y_pred_test)
- print("推广mse差", test_mse-train_mse)
- '''
- with open("train_curve.csv","w") as f :
- f.writelines("\n".join(train_curve))
- 保存数据
- with open("test_curve.csv","w") as f :
- f.writelines("\n".join(test_curve))
- '''
- for x in test_curve:
- print(x)
- return X_train,y_train, model.coef_, model.intercept_
- def draw_line():
- x_train, y_train = read_data("../bbztx/train_data")
- print(x_train.tolist())
- print(y_train.tolist())
- draw_util.drawScatter(x_train.tolist(), y_train.tolist())
- if __name__ == '__main__':
- # draw_line()
- p, q, w,b = demo()
- p = [i[0] for i in p.tolist()]
- q = [i[0] for i in q.tolist()]
- w = w[0]
- b = b[0]
- # draw_util.drawScatterAndLine(p, q, w, b)
|