12345678910111213141516171819202122232425262728293031323334353637383940 |
- # -*- encoding:utf-8 -*-
- from sklearn import svm
- from sklearn import datasets
- from sklearn.model_selection import train_test_split as ts
- '''
- ‘linear’:线性核函数
- ‘poly’:多项式核函数
- ‘rbf’:径像核函数/高斯核
- ‘sigmod’:sigmod核函数
- ‘precomputed’:核矩阵
- '''
- #import our data
- iris = datasets.load_iris()
- X = iris.data
- y = iris.target
- #split the data to 7:3
- X_train,X_test,y_train,y_test = ts(X,y,test_size=0.3)
- print y_test
- # select different type of kernel function and compare the score
- # kernel = 'rbf'
- clf_rbf = svm.SVC(kernel='rbf')
- clf_rbf.fit(X_train,y_train)
- score_rbf = clf_rbf.score(X_test,y_test)
- print("The score of rbf is : %f"%score_rbf)
- # kernel = 'linear'
- clf_linear = svm.SVC(kernel='linear')
- clf_linear.fit(X_train,y_train)
- score_linear = clf_linear.score(X_test,y_test)
- print("The score of linear is : %f"%score_linear)
- # kernel = 'poly'
- clf_poly = svm.SVC(kernel='poly')
- clf_poly.fit(X_train,y_train)
- score_poly = clf_poly.score(X_test,y_test)
- print("The score of poly is : %f"%score_poly)
|