lstm_train.py 6.1 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206
  1. import keras
  2. # -*- encoding:utf-8 -*-
  3. import numpy as np
  4. from keras.models import Sequential
  5. # 优化方法选用Adam(其实可选项有很多,如SGD)
  6. from keras.optimizers import Adam
  7. import random
  8. from keras.models import load_model
  9. from imblearn.over_sampling import RandomOverSampler
  10. from keras.utils import np_utils
  11. # 用于模型初始化,Conv2D模型初始化、Activation激活函数,MaxPooling2D是池化层
  12. # Flatten作用是将多位输入进行一维化
  13. # Dense是全连接层
  14. from keras.layers import Conv2D, Activation, MaxPool2D, Flatten, Dense,Dropout,Input,MaxPooling2D,BatchNormalization,concatenate
  15. from keras.layers import LSTM
  16. from keras import regularizers
  17. from keras.models import Model
  18. from keras.callbacks import EarlyStopping
  19. early_stopping = EarlyStopping(monitor='accuracy', patience=5, verbose=2)
  20. epochs= 440
  21. size = 580000 # 61W
  22. file_path = 'D:\\data\\quantization\\stock160_18d_train.log'
  23. model_path = '160_18d_lstm_5D_ma5_s_seq.h5'
  24. def read_data(path):
  25. lines = []
  26. with open(path) as f:
  27. for x in range(size): #380000
  28. lines.append(eval(f.readline().strip()))
  29. random.shuffle(lines)
  30. print('读取数据完毕')
  31. d=int(0.7*len(lines))
  32. train_x=[s[:-2] for s in lines[0:d]]
  33. train_y=[s[-1] for s in lines[0:d]]
  34. test_x=[s[:-2] for s in lines[d:]]
  35. test_y=[s[-1] for s in lines[d:]]
  36. print('转换数据完毕')
  37. ros = RandomOverSampler(random_state=0)
  38. X_resampled, y_resampled = ros.fit_sample(np.array(train_x), np.array(train_y))
  39. print('数据重采样完毕')
  40. return X_resampled,y_resampled,np.array(test_x),np.array(test_y)
  41. train_x,train_y,test_x,test_y=read_data(file_path)
  42. train_x_a = train_x[:,:18*24]
  43. train_x_a = train_x_a.reshape(train_x.shape[0], 18, 24)
  44. # train_x_b = train_x[:, 18*24:18*16+10*18]
  45. # train_x_b = train_x_b.reshape(train_x.shape[0], 18, 10, 1)
  46. train_x_c = train_x[:,18*24:]
  47. def create_mlp(dim, regress=False):
  48. # define our MLP network
  49. model = Sequential()
  50. model.add(Dense(64, input_dim=dim, activation="relu"))
  51. model.add(Dense(64, activation="relu"))
  52. # check to see if the regression node should be added
  53. if regress:
  54. model.add(Dense(1, activation="linear"))
  55. # return our model
  56. return model
  57. def create_cnn(width, height, depth, filters=32, kernel_size=(5, 6), regress=False, output=24):
  58. # initialize the input shape and channel dimension, assuming
  59. # TensorFlow/channels-last ordering
  60. inputShape = (width, height, 1)
  61. chanDim = -1
  62. # define the model input
  63. inputs = Input(shape=inputShape)
  64. x = inputs
  65. # CONV => RELU => BN => POOL
  66. x = Conv2D(filters, kernel_size, strides=(2,2), padding="same",
  67. # data_format='channels_first'
  68. )(x)
  69. x = Activation("relu")(x)
  70. x = BatchNormalization(axis=chanDim)(x)
  71. # x = MaxPooling2D(pool_size=(2, 2))(x)
  72. # if width > 2:
  73. # x = Conv2D(32, (10, 6), padding="same")(x)
  74. # x = Activation("relu")(x)
  75. # x = BatchNormalization(axis=chanDim)(x)
  76. # flatten the volume, then FC => RELU => BN => DROPOUT
  77. x = Flatten()(x)
  78. x = Dense(output)(x)
  79. x = Activation("relu")(x)
  80. x = BatchNormalization(axis=chanDim)(x)
  81. x = Dropout(0.2)(x)
  82. # apply another FC layer, this one to match the number of nodes
  83. # coming out of the MLP
  84. x = Dense(output)(x)
  85. x = Activation("relu")(x)
  86. # check to see if the regression node should be added
  87. if regress:
  88. x = Dense(1, activation="linear")(x)
  89. # construct the CNN
  90. model = Model(inputs, x)
  91. # return the CNN
  92. return model
  93. def create_lstm(sample, timesteps, input_dim):
  94. inputShape = (timesteps, input_dim)
  95. # define the model input
  96. inputs = Input(shape=inputShape)
  97. x = inputs
  98. x = LSTM(units = 64, input_shape=(timesteps, input_dim), dropout=0.2
  99. )(x)
  100. # x = LSTM(16*16, return_sequences=False)
  101. # x = Activation("relu")(x)
  102. x = Dense(64)(x)
  103. x = Dropout(0.2)(x)
  104. x = Activation("relu")(x)
  105. # construct the CNN
  106. model = Model(inputs, x)
  107. # return the CNN
  108. return model
  109. # create the MLP and CNN models
  110. mlp = create_mlp(train_x_c.shape[1], regress=False)
  111. cnn_0 = create_lstm(train_x_a.shape[1], 18, 24)
  112. # cnn_1 = create_cnn(18, 10, 1, kernel_size=(3, 5), filters=32, regress=False, output=120)
  113. # create the input to our final set of layers as the *output* of both
  114. # the MLP and CNN
  115. combinedInput = concatenate([mlp.output, cnn_0.output,])
  116. # our final FC layer head will have two dense layers, the final one
  117. # being our regression head
  118. x = Dense(256, activation="relu", kernel_regularizer=regularizers.l1(0.003))(combinedInput)
  119. x = Dropout(0.2)(x)
  120. x = Dense(256, activation="relu")(x)
  121. x = Dense(512, activation="relu")(x)
  122. # 在建设一层
  123. x = Dense(5, activation="softmax")(x)
  124. # our final model will accept categorical/numerical data on the MLP
  125. # input and images on the CNN input, outputting a single value (the
  126. # predicted price of the house)
  127. model = Model(inputs=[mlp.input, cnn_0.input,], outputs=x)
  128. print("Starting training ")
  129. # h = model.fit(train_x, train_y, batch_size=4096*2, epochs=500, shuffle=True)
  130. # compile the model using mean absolute percentage error as our loss,
  131. # implying that we seek to minimize the absolute percentage difference
  132. # between our price *predictions* and the *actual prices*
  133. opt = Adam(lr=1e-3, decay=1e-3 / 200)
  134. model.compile(loss="categorical_crossentropy", optimizer=opt, metrics=['accuracy'],
  135. )
  136. # train the model
  137. print("[INFO] training model...")
  138. model.fit(
  139. [train_x_c, train_x_a, ], train_y,
  140. # validation_data=([testAttrX, testImagesX], testY),
  141. # epochs=int(3*train_x_a.shape[0]/1300),
  142. epochs=epochs,
  143. batch_size=4096, shuffle=True,
  144. callbacks=[early_stopping]
  145. )
  146. test_x_a = test_x[:,:18*24]
  147. test_x_a = test_x_a.reshape(test_x.shape[0], 18, 24)
  148. # test_x_b = test_x[:, 18*16:18*16+10*18]
  149. # test_x_b = test_x_b.reshape(test_x.shape[0], 18, 10, 1)
  150. test_x_c = test_x[:,18*24:]
  151. # make predictions on the testing data
  152. print("[INFO] predicting house prices...")
  153. score = model.evaluate([test_x_c, test_x_a], test_y)
  154. print(score)
  155. print('Test score:', score[0])
  156. print('Test accuracy:', score[1])
  157. model.save(model_path)
  158. model=None