1234567891011121314151617 |
- from sklearn.datasets import make_classification
- from collections import Counter
- from imblearn.over_sampling import RandomOverSampler
- X, y = make_classification(n_samples=5000, n_features=2, n_informative=2,
- n_redundant=0, n_repeated=0, n_classes=3,
- n_clusters_per_class=1,
- weights=[0.01, 0.05, 0.94],
- class_sep=0.8, random_state=0)
- # Counter(y)
- print(X)
- print(y)
- ros = RandomOverSampler(random_state=0)
- X_resampled, y_resampled = ros.fit_sample(X, y)
- print(X_resampled)
- # sorted(Counter(y_resampled).items())
|