1234567891011121314151617181920212223242526272829303132333435 |
- # -*- encoding:utf-8 -*-
- from sklearn import datasets
- from sklearn.model_selection import train_test_split
- from sklearn.linear_model import LinearRegression
- from sklearn.model_selection import cross_val_predict
- from numpy import shape
- from sklearn import metrics
- def array_to_list(data):
- data = data.tolist()
- return data
- loaded_data = datasets.load_breast_cancer()
- # loaded_data = datasets.load_boston()
- data_X = loaded_data.data
- data_y = loaded_data.target
- X_train, X_test, y_train, y_test = train_test_split(data_X, data_y, test_size=0.2)
- X_train = array_to_list(X_train)
- X_test = array_to_list(X_test)
- y_train = array_to_list(y_train)
- y_test = array_to_list(y_test)
- train_data = zip(X_train, y_train)
- train_data = [str(list(s)) for s in train_data]
- test_data = zip(X_test, y_test)
- test_data = [str(list(s)) for s in test_data]
- with open("cancer_train_data", "w") as f:
- f.writelines("\n".join(train_data))
- with open("cancer_test_data", "w") as f:
- f.writelines("\n".join(test_data))
|